Neutrino observatories in high-pressure salt caverns

- Ultra-low-cost underground space can be made in solution mined salt caverns
 - Costs ~ \$20/m³
 - Volumes to 2x10⁶ m³
 - Depths 500-3000m
- Can we do experiments in them?
 - Pros: vast space, low U/Th/K, no explosion hazards, many sites
 - Cons: Experiment has to fit down a narrow well
 - Pro or con?: normally flooded and pressurized
- Current focus: spherical and cylindrical gas TPCs
 - Detector, veto, and shielding balloons are lowered into the cavern and inflated
 - Seeking collaborators & funding

NE

Ben Monreal Case Western Reserve University benjamin.monreal@case.edu

Case Underground Salt Observatory

- Proposal:
- 10-15m cavern
 - 12" well bore
 - 600m depth (60 bar)
 - same salt as IMB

CUSO physics:

- Ton-scale He/H₂ spherical TPC for light dark matter
- R&D, radioassay

Larger-cavern physics:

- kT-scale Ne (solar v)
- kT-scale H₂ (\bar{v} , DM)
- 10t-scale Xe gas
- Low pressure TPCs?
- Water Cerenkov?

Neutrino observatories in high-pressure salt caverns

Ben Monreal Case Western Reserve University benjamin.monreal@case.edu

50 years of industry & DOE experience with solution mining; 100% standard processes

Wellhead of a solutionmined cavern producing industrial salt in Seville, OH